Theoretical Physics at JLab

David Richards

JSA Science Council

April, 2007

Outline

- Why a Theory Center at Jefferson Lab?
- Who are the members?
- What they do overview
- Highlights and Initiatives
 - Theory in concert with Experimental Program
 - EBAC
 - Lattice QCD
- Summary

Key Roles of Theory at JLab

- Contribute to Intellectual Leadership of Lab
 - NSAC Long-range Plan
- Phenomenological Support of Experimental Program
 - development/analysis of proposals
 - essential support in interpretation of data
- Projects of scope/duration appropriate to a national laboratory: EBAC, Lattice QCD
- Education and Development of graduate students and postdoctoral fellows
 - HUGS (Hampton University Graduate School).
 - Theory-Group mini-lectures (Erlich, Epelbaum)
 - Graduate-level Hadronic Physics (Melnitchouk)

JLab Theory Center: Senior Staff

• 5 Laboratory staff (4.5 FTE)

Robert Edwards lattice gauge theory

Franz Gross (0.5 time)

Wally Melnitchouk phenomenology

David Richards Deputy Director (lattice gauge theory)

Christian Weiss phenomenology

Distinguished Visitors: S. Brodsky, W. Bentz, D. Diakonov,

V. Flambaum, P. Guichon, B. Holstein, D. Leinweber, G. Miller, M.

Peardon, A. Sibirtsev, J. Tjon....

Chief Scientist / Director: Anthony Thomas

8 staff with joint appointments (4.0 FTE) 50 % Lab support)

Ian Balitsky (ODU) Jozef Dudek (ODU)

Jose Goity (Hampton) Rocco Schiavilla (ODU)

Kostas Orginos (W&M) Marc Vanderhaeghen (W&M)

Anatoly Radyushkin (ODU) Wally van Orden (ODU)

JLab Theory Group: Junior Staff

4 JLab postdoctoral fellows (4 FTE)

HueyWen Lin (PhD 06, Columbia) – since Oct 06

Marc Schlegel (PhD 05, Bochum) - from Oct 03

Nilmani Mathur (PhD 00, RPI) - from July 05

Ross Young (PhD 04, Adelaide) – from Oct 04

Wigner fellow, ANL

Isgur Distinguished Postdoctoral Fellow

Evgeny Epelbaum (Ph.D. 00, Bochum) – Oct 03 to Mar 06 Joint position between Juelich and University of Bonn. Search in Progress

JLab Theory Group: Associate Staff

4 senior staff (100% university support)

Carl Carlson (W&M) Marc Sher (W&M)
Chris Carone (W&M) Peter Agbakpe (NSU)

- 12 graduate students:
 8 supported by JLab (includes 2 LSU)
- Bridge Positions:
 New bridge positions with University of Virginia (Chris Dawson) and with Hampton University, and with Beijing University
- Joint post-doctoral position in phenomenology with Hampton University

 Joint and Bridge Positions vital in attracting graduate students

Distinguished Staff

- 8 Fellows of the American Physical Society;
 1 Fellow Australian Academy of Science and IoP
 Wally Melnitchouk (2007 APS Fellow)
 Kostas Orginos (2007 OJI)
- Serve on IAC of every major conference/workshop in related fields:
- Organization and planning of major workshops
 DNP 2007, Lattice 2008

Marciana Marina, Isola d'Elba, Italy.

Electron-Nucleus Scattering IX Workshop, June 19-23, 2006

Theory Group Research Activity - I

► How quarks and gluons form hadrons and nuclei:

- —Solving QCD in the nonperturbative regime:
 - Lattice Gauge Theory (Dudek, Edwards, Lin, Mathur, Melnitchouk, Orginos, Richards, Thomas, Young)
- —Solving QCD at the boundary between perturbative and nonperturbative regimes:
 - Sum rule techniques (Balitsky, Radyushkin)
 - Hadronic form factors, parton distribution functions, and duality (Balitsky, Carlson, Edwards, Mathur, Melnitchouk, Radyushkin, Richards, Schlegel, Vanderhaeghen, Weiss, Young)
 - QCD at high densities (Balitsky)
- Understanding/modeling the confinement and structure of hadrons and nuclei :
 - Heavy-quark effective theory (Goity)
 - Chiral dynamics and large N_c QCD (Carone, Goity, Gross, Thomas, Young)
 - Relativistic and nonrelativistic quark models (Dudek, Goity, Gross, Van Orden, Thomas)

Theory Group Research Activity - II

- **≻**How nucleons bind together to form nuclei
 - Constructing nuclear interactions and currents:
 - One-boson-exchange phenomenology and similar (Gross, Schiavilla, Van Orden)
 - Effective field theory approach (Thomas, Young)
 - Hadronic interactions in Lattice QCD (Orginos)
 - Structure and reactions of nuclei:
 - •Relativistic approaches to nuclear dynamics (Gross, Schiavilla, Thomas, Van Orden)
 - •Form factors and weak transitions in few-nucleon systems (Gross, Schiavilla, Thomas, Van Orden)
 - •EFT studies of the structure of few-nucleon systems (Gross, Schiavilla)
 - Nuclear reactions of astrophysical interest (Schiavilla)

Theory Group Research Activity - III

- ➤ The Standard Model and beyond (Carlson, Carone, Sher, Thomas, Young)
 - Constraints on lepton-flavor mixing from experiments
 - TeV-scale physics in low-energy parity violating observables
 - CP Violation
 - Time dependent coupling "constants" as tests of extra dimensions
 - NuTeV "anomaly": charge symmetry violation of PDFs
 - Theory support for Qweak
- PAC involvement: (ALL members including post-docs)

Deliver written reports to PAC on every new proposed experiment – viewed as extremely valuable by PAC members.

Physics Program for the 12GeV Upgrade

Highlights: Theory in Concert with the Experimental Program

Revolutionize Our Knowledge of Distribution of Charge and Current in the Nucleon

HP 2010

Precise experimental measurement to confront lattice data

Need to resolve polarization-transfer and LT-separation measurements

Two-photon exchange calculation

Ongoing work by Melnitchouk and Arrington to analyze global ep data ! most accurate determination of G_E and G_M

Generalized Parton Distributions (GPDs): New Insight into Hadron Structure

Major review by Belitsky and Radyushkin, Phys. Rep. 418 (2005), 1-387

GPDs: Phenomenology of hard exclusive processes in *eN* Scattering

- Q², W! 1: QCD factorization
- Aim: extract information from data about GPDs at finite Q², W.
- This requires significant theory input!
- Study uncertainties in model predictions for leading-twist amplitudes *Diehl, Kugler, Schafer, Weiss*, PRD72, 034034 (2005)
- Review of high-energy data at HERA
 - Higher-twist \$ hadronic structure of photon
 - Successful gluon imaging of proton

Frankfurt, Strikman, Weiss, Ann. Rev. Nucl. Part. Sci. 55, 403 (2005)

Develop techniques for GPD analysis of exclusive reactions at JLab@12 GeV

Modeling GPD's

Links between GPDs and FFs explored, using Regge param. at small *t*.

Description of the four p and n form factors.

Guidal, Polyakov, Radyushkin, Vanderhaeghen, PRD72 (2005), 054013

Duality in v N Scattering

- Studies of duality extended from e N to v N scattering
- Appears to be exhibited in F₂ and F₃ structure functions, but less for F₁

Lalakulich et al, PRC75, 015202 (2007)

Strangeness: global analysis of PVES experiments

PVES: Search for New Physics

QWEAK will contrain new physics to beyond 2 TeV

Excited Baryon Analysis Center (EBAC)

- Established: January 2006
- Members: Harry Lee (50/50 ANL), Mark Paris (PDF)
 - + 2 PDFs Summer 2007
- Goal: Reach at DOE Milestone by 2009

"Complete the combined analysis of available single pion, eta and kaon photo-production data for nucleon resonances and incorporate analysis of two-pion final states into the coupled channel analysis of resonances."

EBAC - II

- On-going theoretical projects:
 - Perform dynamical coupled-channel analysis (Julia-Diaz et al)
 - π N, η N, π π N production
 - ω N, K Λ production
 - Develop collaborations with other theoretical efforts
 - Coupled-channel analysis by Julich group (Haidenbauer et al).
 - EBAC-Saclay coupled-channel analysis of η, Κ
 photoproduction (David et al).
- Provide theoretical input to data analyses by experimental groups
- Projects being developed:
 - Reaction models at high Q², accessible to 12 GeV upgrade
 - Investigation of connections with Lattice QCD.

EBAC: First Results - I

EBAC: First Results - II

Start to analyse γ p ! π⁺ π⁻ p JLab data

- · Plans:
 - 2007: Analysis of π , η , π π production data
 - 2008: Full coupled analysis, including ω, K

production data

Lattice QCD

JLab and National Effort

 Jefferson Laboratory co-equal partner with BNL and FNAL in lattice QCD effort.

Lattice QCD at JLab having critical impact on JLab's Nuclear Physics Program

Lattice: Proton EM Form Factors

 $m_{\perp}^2 (\text{GeV})^2$

- Lattice QCD computes the isovector form factor
- Hence obtain Dirac charge radius
 h r²iu-d_{ch} assuming dipole form
- Chiral extrap. Using LNA and LA terms and finite-range regulator.

Leinweber, Thomas, Young, PRL86, 5011

 As the pion mass approaches the physical value, the size approaches the correct value

$$\langle \mathbf{r}^2
angle_{\mathrm{ch}}^{\mathrm{u-d}} = \mathbf{a_0} - 2 \frac{\left(1 + 5 \mathbf{g_A^2}\right)}{(4\pi \mathbf{f_\pi})^2} \frac{1}{2} \log \left(\frac{\mathbf{m_\pi^2}}{\mathbf{m_\pi^2 + \Lambda^2}} \right)$$

Lattice: Origin of Nucleon Spin

- How is the spin of the nucleon divided between quark spin, gluon spin and orbital angular momentum?
- "Spin Crisis" or EMC effect...
- Ji's sum rule enables us to determine total angular momentum carried by quarks in nucleon

Quarks have negligible angular momentum in nucleon

Lattice: Transverse distribution and GPDs

Lattice consistent with narrowing of transverse size with increasing x

Increasing n

$$A_n(t) = \frac{1}{(1 - t/M_n)^2}$$

Lattice: New Initiatives

- LHPC joining with RBC and UKQCD
 Collaborations to generate DWF lattices having
 the correct chiral symmtry: major advance in
 studying hadron structure, achieved through
 improved algorithms, national facilities, and
 national/international collaboration.
- Major new initiative of USQCD, developed by JLab group, to generate dynamical anisotropic clover lattices for spectroscopy and NN physics.

USQCD: Largest award of 10 £ 10⁶ processor-hours under DOE INCITE Program (PI: Edwards)

Lattice: Glimpsing nucleon spectrum

- Operators identified in quenched study are successful in full QCD
- No clear evidence for multi-particle contributions (finite volume!)
- Emergence of Roper resonance at light-quark ma?

Lattice QCD: Hybrids and GlueX - I

- GlueX aims to photoproduce hybrid mesons in Hall D.
- Lattice QCD has a crucial role in both predicting the spectrum and in computing the production rates

- □ MILC qnch Wilson β=5.85
- \square MILC qnch Wilson β =6.15
- UKQCD qnch Clover β=6.0
- SESAM N_e =2 Wilson β =5.6
- MILC qnch Stag.
- ♦ MILC N_E=3 Stag.
- ♦ MILC N_F=2+1 Stag.
- CSSM qnch FLIC
- o UKQCD N_E=2 Clover
- $UKQCD N_{E}=2 b_{1}\pi$
- \checkmark MILC $N_{E}=3 b_{1}\pi$
- MILC N_F=3 ρππ
 - Only a handful of studies of hybrid mesons at light masses – mostly of 1⁻⁺ exotic

Lattice QCD: Hybrids and GlueX - II

- Lattice can compute photocouplings: pioneered at JLab.
- Initial computations in charmonium

cc! γγ: Dudek, Edwards, PRL97, 172001 (2006)

Conclusions

- JLab Theory Center has major impact in inspiring, facilitating, and interpreting the JLab program.
- Recent initiatives coming to fruition Lattice
 QCD, EBAC and new theoretical focus on GlueX
- Impact of Theory Center seen in both publications in high-impact journals, and invited talks at major conferences

